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Dynamical mean-field theory of spiking neuron ensembles:
Response to a single spike with independent noises

Hideo Hasegawa*
Department of Physics, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
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A semianalytical dynamical mean-field theory has been developed for a study of dynamics of an ensemble
of N-unit FitzHugh-Nagumo neurons subject to white noises. Assuming weak noises and the Gaussian distri-
bution of state variables, we have driven equations of motions for moments oflocal and global variables.
Dynamical mean-field approximation~DMA ! has replaced original, 2N-dimensional stochastic differential
equations~DEs! by eight-dimensional deterministic DEs, whereas the conventional moment method yields
N(2N13)-dimensional deterministic DEs for local variables. We have discussed the dependence of the spike
firing precision and the synchronization on the noise intensity, synaptic coupling, and the size of the neuron
ensemble. The spike timing precision is shown to be improved by increasing the size of the neuron ensemble,
even when there are no couplings among neurons. When the coupling is introduced, neurons in ensembles
respond to an input spike with a partial synchronization. Results calculated by our DMA theory are in good
agreement with those obtained by direct simulations. DMA theory is extended to a large cluster which can be
divided into multiple subclusters according to their functions. A model calculation has demonstrated that when
the noise intensity is moderate, the spike propagation with a fairly precise timing is possible among noisy
subclusters with feed-forward couplings, as in the synfire chain. We have compared DMA theory with the
conventional moment method, showing that the former may be alternatively derived from the latter by a
reduction in the number of moments with the mean-field approximation.

DOI: 10.1103/PhysRevE.67.041903 PACS number~s!: 87.10.1e, 84.35.1i, 05.45.2a, 07.05.Mh
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I. INTRODUCTION

It has been controversial that how neurons communic
information by firings or spikes@1–6#. Many debates on the
nature of the neural code have been focused mainly on
two issues. The first issue is whether information is enco
in the average firing rate of neurons~rate code! or in the
precise firing times~temporal code!. Adrian @7# first noted
the relationship between the neural firing rate and the sti
lus intensity, which forms the basis of the rate code. Actua
firing activities of motor and sensory neurons are reporte
vary in response to applied stimuli. In recent years, howe
an alternative temporal code has been proposed in w
detailed spike timings are assumed to play an important
in information transmission: information is encoded in inte
spike intervals or in relative timings between firing times
spikes@8–10#. Indeed, experimental evidences have accum
lated in the past several years, indicating a use of the tem
ral coding in neural systems@11–15#. Human visual systems
for example, have shown to classify patterns within 250
despite the fact that at least ten synaptic stages are invo
from retina to the temporal brain@15#. The transmission
times between two successive stages of synaptic trans
sion are suggested to be no more than 10 ms on the ave
This period is too short to allow rates to be determined
curately.

The second issue is whether information is encoded in
activity of a single~or very few! neuron or that of a large
number of neurons~population or ensemble code!. The
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population rate-code model assumes that information
coded in the relative firing rates of ensemble neurons,
has been adopted in most of the theoretical analysis@16#. On
the contrary, in the population temporal-code model, it
assumed that relative timings between spikes in ensem
neurons may be used as an encoding mechanism for pe
tional processing@17–19#. A number of experimental data
supporting this code have been reported in recent ye
@20,21#. For example, data has demonstrated that tempor
coordinated spikes can systematically signal sensory ob
feature, even in the absence of changes in firing rate of
spikes@22#.

It is well known that neurons in brains are subject
various kinds of noises, which can alter the response of n
rons in various ways. Although firings of a single neocortic
neuron invitro are precise and reliable, those invivo are
quite unreliable@23#. This is due to noisy environment in
viro, which makes the reliability of neuron firings worse. Th
strong criticism against the temporal code is that spikes
vulnerable to noise, while the rate code performs robustly
the presence of noise but with limited information capac
It has been shown, however, that the response of neuro
improved by background noises against our conventio
wisdom. The typical example is the stochastic resona
~SR!, in which weak noises enhance the transmission of s
threshold signals~for review, see Refs.@24,25#!. It has been
shown that noise of appropriate magnitude linearlizes
response of neurons, which leads to SR and maxim
input-output correlation, transformation, and coherence~for
review, see Ref.@26#!. Recently, it has been demonstrat
that noises can enhance the firing-time reliability of neuro
stimulated by weak periodic and aperiodic inputs@27–29#.
We may expect that a population of neuron ensembles p
©2003 The American Physical Society03-1
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important roles in the response of neurons subject to noi
Actually, SR in Hodgkin-Huxley~HH! neuron ensembles ha
been first demonstrated for a single spike by Pei, Wilke
and Moss@30#. Subsequently, this pooling effect has be
supported for aperiodic@31,32# and periodic~analog! signals
@33# and for spike-train inputs@34,35#. Quite recently, SR for
a transient spike signal in large-scale HH neuron ensem
has been studied by using the wavelet analysis@34#. It may
be possible that the firing-time precision is also improved
increasing the size of neuron ensembles.

A small patch of cortex may contain thousands of simi
neurons, each connecting with hundreds or thousand
other neurons in that same patch or in other patches.
underlying dynamics of individual neurons includes a vari
of voltage dependent ionic channels which can be descr
by Hodgkin-Huxley-type differential equations. Comput
tional neuroscientists have so far tried to gain understand
of the properties of neuron ensembles with the use of
approaches:~i! direct simulations and~ii ! analytical ap-
proaches such as mean-field~MF! theories and the Fokker
Plank equation~FPE!. Simulations have been made for larg
scale networks mostly consisting of integrate-and-fire~IF!
neurons. Since the time to simulate networks by conv
tional methods grows asN2 with N, the size of the network
@36#, it is rather difficult to simulate realistic neuron cluste
in spite of recent computer development. In MF theor
@37–40#, dynamics of globally coupled large-scale networ
is described by a flow of phases or the population activ
which determines the fraction of the firing rate of neuro
The stability condition for synchronous and asynchrono
states of neuron clusters has been investigated. Quite
cently, the population density method has been develope
a modeling tool for large-scale neuronal clusters@41,42#. In
these MF approaches, the macroscopic variable of intere
the firing rate following therate-codehypothesis. However
only little MF approaches have so far been proposed ba
on the temporal-code hypothesis@39,40#.

The purpose of the present study is to construct a dyna
cal mean-field approximation~DMA ! theory based on the
temporal-code hypothesis, generalizing the method pr
ously proposed by Rodriguez and Tuckwell~RT! @43–46#. In
the RT theory, the dynamics of the membrane potential o
neuron subject to white noises is studied by replacingsto-
chasticdifferential equations~DEs! by deterministicDEs de-
scribed by moments of state variables. RT’s general the
has first been applied to a single FitzHugh-Nagumo~FN!
neuron@43,44# and then a HH neuron@45,46#. In the case of
a single FN neuron, two stochastic DEs are replaced by
deterministic DEs, for which an improvement to the R
theory has been recently proposed@47#. When the RT theory
is applied to anN-unit FN neuron network, 2N stochastic
DEs are replaced byNeq5N(2N13) deterministic DEs
@43,46#. In the case ofN51000, for example, we getNeq
52 003 000, which is too large to perform calculations f
realistic neuron ensembles. In their subsequent paper@45#,
the result of ensemble neurons is transplanted to FPE fo
transition probability density, which is a partial DE wit
2N11 independent variables. Solving such FPE is a h
computational task. We will present in this paper, an alter
04190
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tive MF theory forN-unit FN neuron ensembles, replacin
2N stochastic DEs byeightdeterministic DEs which are ex
pressed in terms of means, variances, and covariance
local andglobal state variables.

There are several nonlinear models which have been u
for the study of neuron activities. Among them, we empl
here the FN model@48,49# because it is relatively simple an
amenable to analysis although the FN model does not h
as firm an empirical basis as conductance-based model
as the HH model. The property of the FN model has be
intensively investigated. In recent years, SR of a single
neuron@50–52# and FN neuron ensembles@31,32,53,54# has
been studied.

The paper is organized as follows. In Sec. II, we ha
developed a DMA theory forN-unit FN neuron ensembles
expanding stochastic DEs in terms of deviations from me
in order to get equations of motions for variances and co
riances of local and global variables. Comparing our DM
theory with the moment method@45#, we show that the
former may be alternatively derived from the latter by a
duction in the number of moments with the mean-field a
proximation. In Sec. III, some calculated results are repor
of the response of ensemble neurons to a single spike
white noises. It will be shown that the spike firing precisio
is improved by increasing the ensemble size and the syna
couplings, as expected. In Sec. IV, DMA theory is extend
to a large cluster consisting of multiple subclusters a
model calculations are reported. Finally, Sec. V is devoted
conclusions.

II. DYNAMICAL MEAN-FIELD APPROXIMATION

A. Basic formulation

We assume a neuron ensemble consisting ofN-unit FN
neurons. Dynamics of a single FN neuroni in a given en-
semble is described by the nonlinear DEs given by

dxi~ t !

dt
5F@xi~ t !#2cyi~ t !1

w

N (
j (Þ i )

G~xj~ t !!1I (e)~ t !

1j i~ t !, ~1!

dyi~ t !

dt
5bxi~ t !2dyi~ t !1e ~ i 512N!, ~2!

whereF@x(t)#5k x(t)@x(t)2a#@12x(t)#, k50.5, a50.1,
b50.015,c51.0, d50.003, ande50 @43,44#, andxi andyi
denote the fast~voltage! and slow~recovery! variables, re-
spectively. The third term in Eq.~1! stands for the couplings
among neurons with the coupling strengthw and the sigmoid
function G(x)51/„11exp@2(x2u)/a#… with the thresholdu
and the widtha; the self-coupling terms are excluded an
the normalization factor ofN21 is adopted instead of (N
21)21 for a later study of theN51 limit. The fourth term of
Eq. ~1!, I (e)(t), expresses an external, single spike input
plied to all neurons, given by

I (e)~ t !5A Q~ t2t in!Q~ t in1Tw2t !, ~3!
3-2
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whereQ(x)51 for x.0 and 0 otherwise,A stands for the
magnitude,t in the input time andTw the spike width. The
last term of Eq.~1!, j i(t), denotes the independent Gauss
white noise with ^j i(t)&50 and ^j i(t)j j (t8)&5b2d i j d(t
2t8), the bracket̂ •••& denoting the average over stochas
random variables@see Eq.~8!#.

After RT @43,44#, we will express these nonlinear DEs b
moments of variables. We define the global variables for
ensemble by

X~ t !5
1

N (
i

xi~ t !, ~4!

Y~ t !5
1

N (
i

yi~ t !, ~5!

and their averages by

m1~ t !5^X~ t !&, ~6!

m2~ t !5^Y~ t !&. ~7!

Here, the bracket of̂Q(z,t)& denotes the average~or the
expectation value! of an arbitrary functionQ(z,t) of N FN
neuron ensembles defined by

^Q~z,t !&5E •••E dzQ~z,t !p~z!, ~8!

wherep(z) denotes a probability distribution function~pdf!
for 2N-dimensional random variables of z
5(x1 , . . . ,xN ,y1 , . . . ,yN) t. Rodriguez and Tuckwell@43#
have shown that whenp(z) is given by the Gauss distribu
tion concentrated near the mean pointm, we may expand
^Q(z,t)& around Q(m,t) in terms of the first and secon
moments of the variables. We express DEs given by Eqs~1!
and~2! in terms of the deviations from their averages defin
by

dxi~ t !5xi~ t !2m1~ t !, ~9!

dyi~ t !5yi~ t !2m2~ t !, ~10!

to get ~the argumentt is hereafter suppressed!

dxi

dt
5F~m1!1F8~m1!dxi1

1
2 F (2)~m1!dxi

21 1
6 F (3)~m1!dxi

3

2cm22cdyi1I i
(c)1I i

(e)1j i , ~11!

dyi

dt
5bm12dm21bdxi2ddyi1e, ~12!

with

I i
(c)5wS 12

1

NDG~m1!1
w

N (
j (Þ i )

FG8~m1!dxj

1
1

2
G(2)~m1!dxj

21
1

6
G(3)~m1!dxj

3G . ~13!
04190
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We define the variances and covariances between local
ables given by

g1,15
1

N (
i

^dxi
2&, ~14!

g2,25
1

N (
i

^dyi
2&, ~15!

g1,25
1

N (
i

^dxidyi&, ~16!

and those between global variables given by

r1,15^dX2&, ~17!

r2,25^dY2&, ~18!

r1,25^dX dY&, ~19!

wheredX5X(t)2m1(t) and dY5Y(t)2m2(t). It is noted
thatgk,l expresses the spatial average of fluctuations in lo
variables ofxi and yi , while rk,l denotes fluctuations in
global variables ofX andY ~k,l51,2!.

We assume that the noise intensityb is weak and the
distribution of state variables takes the Gaussian form. T
first assumption allows us to expand the quantities in
power series of fluctuation moments around means. As
the second assumption, numerical simulations have sh
that for weak noises, the distribution ofx(t) of the mem-
brane potential of a single FN neuron nearly obeys
Gaussian distribution, although for strong noises, the dis
bution of x(t) deviates from the Gaussian taking a bimod
form ~see Fig. 8 of Ref.@44# and Fig. 3 of Ref.@47#!. Similar
behavior of the membrane-potential distribution has been
ported also in a HH neuron model@27,28#. Furthermore, we
adopt a mean-field approximation in which quantities av
aged at a given site are assumed to be the same as
global averages. This type of approximations has b
widely adopted in mean-field theories such as the We
theory for magnetism@55# and the coherent-potential ap
proximation for random alloys@56#. When we adopt the
Gaussian decoupling approximation and the mean-field
proximation, averages of fluctuations are expressed in te
of the first and second moments only@Eqs.~A6!–~A9!#. Af-
ter some manipulations, we get equations of motions formk ,
gk,l , andrk,l (k,l51,2) given by~for details, see Appen-
dix A!

dm1

dt
5 f 01 f 2g1,12cm21wS 12

1

NDU01I (e)~ t !, ~20!

dm2

dt
5bm12dm21e, ~21!
3-3
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dg1,1

dt
52@~ f 113 f 3g1,1!g1,12cg1,2#

12wS r1,12
g1,1

N DU11b2, ~22!

dg2,2

dt
52~bg1,22dg2,2!, ~23!

dg1,2

dt
5bg1,11~ f 113 f 3g1,12d!g1,22cg2,2

1wS r1,22
g1,2

N DU1 , ~24!

dr1,1

dt
52@~ f 113 f 3g1,1!r1,12cr1,2#12wS 12

1

ND r1,1U1

1
b2

N
, ~25!

dr2,2

dt
52~br1,22dr2,2!, ~26!

dr1,2

dt
5br1,11~ f 113 f 3g1,12d!r1,22cr2,2

1wS 12
1

ND r1,2U1 , ~27!

with

U05go1g2g1,1, ~28!

U15g113g3g1,1, ~29!

f ,5S 1

,! DF (,)~m1!, ~30!

g,5S 1

,! DG(,)~m1!. ~31!

The original 2N-dimensionalstochasticDEs given by
Eqs.~1! and ~2! are transformed to eight-dimensionaldeter-
ministic DEs given by Eqs.~20!–~27!, which show much
variety depending on model parameters such as the stre
of white noise (b), couplings (w), and the size of cluste
(N).

B. Derivation of DMA theory from the moment method

Although DMA theory has been derived in preceding S
II A, from a calculation of equations of motions for mean
variances, and covariances of local and global variables
will show that DMA theory may be derived also from th
moment method initiated by Rodriguez and Tuckwell@43#.
For anN-unit FN neuron ensemble, the moment method
fines means of variables ofxi andyi for the neuroni given
by
04190
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m1
i 5^xi&, ~32!

m2
i 5^yi& ~33!

for a calculation of variances and covariances betweenlocal
variables given by

C1,1
i , j 5^DxiDxj&, ~34!

C2,2
i , j 5^DyiDyj&, ~35!

C1,2
i , j 5^DxiDyj&, ~36!

whereDxi5xi2m1
i and Dyi5yi2m2

i : variances are given
by setting i 5 j . Adopting the assumptions of weak nois
and the Gaussian distribution for state variables, we get D
for these moments given by~for details see Appendix A!

dm1
i

dt
5 f 0

i 1 f 2
i C1,1

i ,i 2cm2
i 1

w

N (
k(Þ i )

@go
k1g2

kC1,1
k,k#1I (e),

~37!

dm2
i

dt
5bm1

i 2dm2
i 1e, ~38!

dC1,1
i , j

dt
5~ f 1

i 13 f 3
i C1,1

i ,i 1 f 1
j 13 f 3

j C1,1
j , j !C1,1

i , j 2c~C1,2
i , j 1C2,1

i , j !

1b2d i j 1
w

N F (
k(Þ i )

~g1
k13g3

kC1,1
k,k!C1,1

k, j

1 (
k(Þ j )

~g1
k13g3

kC1,1
k,k!C1,1

i ,kG , ~39!

dC2,2
i , j

dt
5b~C1,2

i , j 1C2,1
i , j !22dC2,2

i , j , ~40!

dC1,2
i , j

dt
5bC1,1

i , j 1~ f 1
i 13 f 3

i C1,1
i ,i 2d!C1,2

i , j 2cC2,2
i , j

1
w

N (
k(Þ i )

~g1
k13g3

kC1,1
k,k!C1,2

k, j ~ i , j 51 –N!,

~41!

where

f ,
i 5S 1

,! DF (,)~m1
i !, ~42!

g,
i 5S 1

,! DG(,)~m1
i !. ~43!

The original RT theory@43# includes up to the second-orde
moments. The expression given by Eqs.~37!–~41!, however,
takes into account up to the fourth-order moments with
use of the Gaussian decoupling approximation@47#: RT’s
result may be given by Eqs.~37!–~41!, but by settingf 3

i

5g3
k50.
3-4
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Comparing Eqs.~4!–~7! and ~14!–~19! with Eqs. ~32!–
~36!, we define the quantities given by

m̄k5
1

N (
i

mk
i , ~44!

ḡk,l5
1

N (
i

Ck,l
i ,i 1dk,l , ~45!

r̄k,l5
1

N2 (
i

(
i

Ck,l
i , j ~k,l51,2!, ~46!

with

dk,l5
1

N (
i

dmk
i dml

i , ~47!

dmk
i 5mk

i 2mk , ~48!

where we employ the identities:dxi5Dxi1dm1
i and dyi

5Dyi1dm2
i . By using Eqs.~37!–~41! and ~44!–~46!, we

get DEs fordm̄k /dt, dḡk,l /dt, anddr̄k,l /dt from the mo-
ment method. It may be shown that DEs obtained from
second-order moment method, wheref 35g350 in Eqs.
~37!–~41!, exactly agree with corresponding DEs in DMA
This is because DEs within the second-order moment
proximation are linear functions of the first- and secon
order moments, details being presented in Appendix B@Eqs.
~B1!–~B8!#. In contrast, when the fourth-order mome
terms in these DEs are linearized with the use of the Ga
ian and mean-field approximations as given by Eqs.~B14!–
~B16!, results obtained from the fourth-order mome
method again agree with those of DMA.

It is worthwhile to show that DMA theory may be mor
easily derived from the moment method when the followi
conditions are satisfied:

mk
i 5mk , ~49!

Ck,l
i , j 5d i j Ck,l1~12d i j !Ĉk,l , ~50!

wheremk denotes the constant value ofmk
i independent ofi,

andCk,l and Ĉk,l stand for the intrasite and intersite term
of Ck,l

i , j , respectively. The conditions given by Eqs.~49! and
~50! will be satisfied in excitable neuron ensembles with u
form couplings, where the variables in all neurons are in
rest state without external inputs, and nearest-neighbor
and far-neighbor sites of a given neuron are indistingui
able. Substituting Eqs.~49! and ~50! in Eqs. ~44!–~46!, we
get

m̄k5mk , ~51!

ḡk,l5Ck,l , ~52!

r̄k,l5
1

N
Ck,l1S 12

1

ND Ĉk,l . ~53!
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We may show thatmk5m̄k , gk,l5ḡk,l , and rk,l5 r̄k,l ,
which hold even within the fourth-order moment approxim
tion.

For a single FN neuron (N51), the moment method an
DMA yield the same result~see Appendix B!. For a pair of
FN neurons (N52), numbers of coupled DE equations a
Neq514 and 8 in the moment and DMA methods, respe
tively, where we employ the symmetry relations such
Ck,l

1,2 5Cl,k
2,1 . A more detailed comparison between DMA an

moment methods for the case ofN52 is provided in Appen-
dix B with some numerical calculations.

For a generalN-unit FN neuron ensemble, the number
coupled DEs in the moment method@Eqs. ~37!–~41!# is
Neq52N1N(2N11)5N(2N13), which is 230, 20 300,
and 2 003 000 forN510, 100, and 1000, respectively, whi
Neq58 independent ofN in our DMA theory @Eqs. ~20!–
~27!#. Thus,Neq in the moment method has the exponent
N dependence, which prevents us from performing calcu
tions for realistic neuron ensembles.

C. Property of DMA theory

The DMA theory successfully reduces the number
DEs, by taking account ofmk , gk,l , and rk,l for global
variables as well aslocal variables instead ofmk

i and Ck,l
i , j

for local variables. The moment method imposes no c
straints on the coupling strength@43–46#. This is expected to
be the case also for DMA theory, although it may beco
worse for stronger couplings because of the additionally
troduced mean-field approximation. One of the advanta
of the moment method over the DMA is that the former m
take into account the intersite cross correlation between
different neurons such asCk,l

i , j for iÞ j , while DMA calcu-
lates the averaged quantities. The DMA, however, has
vantages of a tractable small number of DEs and clear se
analytical nature, from which some qualitative results m
be deduced without numerical calculations, as will be sho
shortly @e.g., Eq.~57!#. DMA is expected to be better applie
to largerN ensembles, which is inherent in mean-field the
ries @55,56#.

1. Single-site self-consistent approximation

It is possible to regard DMA theory as thesingle-site self-
consistenttheory. Let us assume a configuration in which
single neuroni is embedded in an effective medium who
effect is realized by a given neuroni as its effective externa
input through the couplingw. We replace quantities ofmk

k ,
Ck,l

k,k , and (1/N)(k(Þ,)Ck,l,,k in coupling terms of Eqs.
~37!–~41! by effective quantities of mk , gk,l , and rk,l
2(1/N)gk,l , respectively. Then, in order to determine the
quantities just introduced, we impose the self-consistent c
dition given by@see Eqs.~44!–~46!#

mk5mk
i , ~54!

gk,l5Ck,l
i ,i , ~55!
3-5
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rk,l2
1

N
gk,l5

1

N (
j (Þ i )

Ck,l
i , j . ~56!

Note that Eqs.~54!–~56! are assumed to hold independent
i and thatmk

i andCk,l
i , j on their righthand sides are function

of mk , gk,l , andrk,l . The condition given by Eqs.~54!–
~56! yields DEs for mk , gk,l , and rk,l which are again
given by Eqs.~20!–~27!. The self-consistent condition give
by Eqs.~54!–~56!, which assumes that the quantities av
aged at a given site are the same as those of the effe
medium, is common in mean-field theories@55,56#.

2. Firing-time distribution

We should note that the noise contribution isb2 in Eq.
~22!, while that isb2/N in Eq. ~25!. It is easy to see that

rk,l5H gk,l

N
for w/b2→0 ~57a!

gk,l for b2/w→0. ~57b!

Equation~57a! agrees with thecentral-limit theorem. Thus,
the ratio rk,l /gk,l changes as model parameters a
changed. We will show that these changes inrk,l andgk,l
reflect on the firing-time distribution and the degree of sy
chronous firings in neurons ensembles.

Thenth firing time of a given neuroni in the ensemble is
defined as the time whenxi(t) crosses the thresholdu from
below:

toin5$tuxi~ t !5u; ẋi.0;t>toin211t r%, ~58!

where t r denotes the refractory period introduced so as
avoid multiple firings in a short period arising from fluctu
tions in voltage variables around the threshold. We get
distribution for the membrane-potential variablexi given by
~for details, see Appendix C!

P~xi !.S 1

s,
DfS xi2m1

s,
D , ~59!

wheref(x) is the normal distribution function given by

f~x!5
1

A2p
expS 2

x2

2 D , ~60!

with

s,5Ag1,1. ~61!

This implies that the distribution of the voltage variablexi(t)
is described by the Gaussian distribution with the mean
m1(t) and the variance ofg1,1(t). The probability given by
Eq. ~59! depends on the time because of the time depende
of xi(t) ands,(t). The probabilityWoi(t) whenxi(t) at t is
above the thresholdu is given by@43#

Woi~ t !512cS u2m1

s,
D , ~62!
04190
f

-
ive

e

-

o

e

f

ce

wherec(y) is the error function given by integratingf(x)
from 2` to y. Then the probability averaged over the e
semble is given by

W,~ t !5
1

N (
i

Woi~ t !512cS u2m1

s,
D . ~63!

The fraction of a given neuroni emitting output spikes att is
given by

Z,~ t !5
d W,~ t !

dt
Q~ṁ1!5fS u2m1

s,
D d

dt S m1

s,
DQ~ṁ1!,

~64!

where ṁ15dm1 /dt. When we expandm1(t) in Eq. ~64!
aroundto* , wherem1(to* )5u, it becomes

Z,~ t !;fS t2to*

dto,
D d

dt S m1

s,
DQ~ṁ1!, ~65!

with

dto,5
s,

ṁ1

, ~66!

wherem1 , ṁ1, and s, are evaluated att5to* . Z,(t) pro-
vides the distribution of firing times showing that most of t
firing times of neurons are located in the range given as

to,P@ to* 2dto, , to* 1dto,#. ~67!

In the limit of vanishingb, Eq. ~65! reduces to

Z,~ t !5d~ t2to* !. ~68!

Similarly, we get the distribution for the global variableX
given by ~for details, see Appendix D!

P~X!.S 1

sg
DfS X2m1

sg
D , ~69!

with

sg5Ar1,1. ~70!

This implies that the distribution of global voltage variab
X(t) is described by the Gaussian distribution with the me
of m1(t) and the variance ofr1,1(t). If we define themth
firing time relevant to the global variableX(t) as

tgm5$tuX~ t !5u;Ẋ~ t !.0;t>tgm211t r%, ~71!

the fraction of firing aroundt5to* is given by

Zg~ t !5fS t2to*

dtog
D d

dt S m1

sg
DQ~ṁ1!, ~72!

with
3-6
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dtog5
sg

ṁ1

. ~73!

Then most oftog is located in the range given by

togP@ to* 2dtog , to* 1dtog#. ~74!

Sincer1,1 is generally smaller thang1,1, we getsg<s, and
dt0g<dto, . In particular, in the case of no couplings, Eq
~57!, ~61!, ~66!, ~70!, and~73! lead to

dtog5
dto,

AN
for w50. ~75!

3. Synchronous response

Now we consider the quantity given by

R~ t !5
1

N2 (
i j

^@xi~ t !2xj~ t !#2&52~g1,12r1,1!. ~76!

When all neurons are in the completely synchronous st
we getxi(t)5X(t) for all i, and thenR(t)50. On the con-
trary, in the asynchronous~random! state, we getR(t)
52(121/N)g1,1[R0(t). Then the quantity defined by

S~ t !512R~ t !/R0~ t !5
~r1,1/g1,121/N!

~121/N!
~77!

is 1 for the completely synchronous state and 0 for the as
chronous state. We hereafter callS(t) the synchronization
ratio, which provides the degree of synchronous firings
the ensemble. We getS50 for w/b2→0, while S51 for
b2/w→0 @Eq. ~57!#.

III. CALCULATED RESULTS

We expect that our DMA equations given by Eqs.~20!–
~27! may show bifurcation, synchronous and asynchron
states, as well as chaotic states. In this study, we pay
attention to the response of the FN neuron ensembles
single spike input,I (e)(t) given by Eq.~3!, which is applied
to all neurons in the ensemble. We have adopted the pa
eters of u50.5, a50.1, t r510, A50.10, t in5100, and
Tw510. Parameter values ofw, b, andN will be explained
shortly. We get the critical magnitude ofAc50.0442 below
which firings of neuron defined by Eq.~58! cannot take place
without noises (b50). We have adopted the value ofA
50.10 (.Ac) for the study of response to a suprathresh
input, related discussion being given in Sec. V.

DMA calculations have been made by solving Eqs.~20!–
~27! by the fourth-order Runge-Kutta method with a tim
step of 0.01. Direct simulations have been performed
solving 2N DEs as given by Eqs.~1! and ~2! by also using
the fourth-order Runge-Kutta method with a time step
0.01. Simulation results are the average of 100 trials, ot
wise noticed. Initial values of variables are set to bem1
5m25g1,15g1,15g1,25r1,15r2,25r1,250 in DMA calcu-
lations, andxi5yi50 for i 51 to N in direct simulations. All
04190
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calculated quantities are dimensionless.
The time courses of means ofm1 andm2 calculated with

b50.01, w50.0, andN5100 are shown in Figs. 1~a! and
1~b!, respectively, where solid curves denote the results
DMA theory and dashed curves those of direct simulatio
We note thatm1 andm2 obtained by two methods are in ver
good agreement and they are indistinguishable. At the b
tom of Fig. 1~a!, an input spike is plotted@see also Fig. 2~a!#.
States of neurons in an ensemble when an input spik
injected att5100 are randomized because noises have b
already added sincet50. Figures 1~c!–1~h! show the time
courses of various variances and covariances. Agreem
between the two methods are good forg1,1, r1,1, g1,2, and
r1,2. There is a fairly good agreement forg2,2 and r2,2.
Comparing Figs. 1~c!, 1~e!, and 1~g! with 1~d!, 1~f!, and
1~h!, respectively, we note that the relation given by Eq.~57!,
rk,l5gk,l/100 valid forw50, is supported by simulations
Note that results in Figs. 1~d!, 1~f!, and 1~h! are multiplied
by a factor of 100.

FIG. 1. Time courses of means, variances, and covariances
culated by DMA theory~solid curves! and simulations~dashed
curves!: ~a! m1, ~b! m2, ~c! g1,1, ~d! r1,1, ~e! g2,2, ~f! r2,2, ~g!
g1,2, and~h! r1,2 for A50.10, b50.01, w50.0, andN5100. Re-
sults of~d!, ~f!, and~h! are multiplied by a factor of 100. The chai
curve at the bottom of~a! expresses a single input spike,I (e), in Eq.
~3! @see also Fig. 2~a!#.
3-7
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HIDEO HASEGAWA PHYSICAL REVIEW E67, 041903 ~2003!
Figures 2~a! shows a single spike input, which is applie
at t5100 with a duration ofTw510. The solid curve in Fig.
2~b! expressZ, , the firing probability of the local variable
xi(t), which is a positive derivative ofW, shown by the
dashed curve@Eqs. ~63! and ~64!#. They are calculated fo
b50.01, w50.0, andN5100 in DMA theory. For a com-
parison, the simulation result forZ, is plotted in Fig. 2~c!.
Firings of neurons occur atto;104–105 with a delay of
about 4 – 5. Fluctuations of firing times of local variabl
dto, are 0.37 calculated by Eq.~66! in DMA theory, and 0.41
in simulations, which is the root-mean-square~rms! value of
firing times defined by Eq.~58!. In contrast, dashed and sol
curves in Fig. 2~d! show Wg and Zg , respectively, for the

FIG. 2. Time courses of~a! I (e), ~b! W, ~the dashed curve! and
Z, ~the solid curve! in DMA theory, ~c! Z, in simulations,~d! Wg

~the dashed curve! andZg ~the solid curve! in DMA theory, and~e!
Zg in simulations, forA50.10, b50.01, w50.0, andN5100.

FIG. 3. ~a! The b dependence ofdto, ~squares! and dtog

~circles! for w50.0 and~b! that for w50.2 with N5100; filled
symbols denoting results in DMA theory and open symbols thos
simulations.
04190
global variableX(t) in DMA theory, while Fig. 2~e! shows
Zg obtained in simulations. Fluctuations in spike timings
the global variable aredtog50.037 calculated by Eq.~73! in
DMA theory, and 0.041 in simulations which is the rms val
of firing times defined by Eq.~71!. These figures ofdtog for
the global variable are ten times smaller than respective
ues ofdto, for the local variable.

A. Noise-strengthb dependence

We expect that as the noise strength is more increased
distribution of membrane potentials is more wider and flu
tuations of firing times are more increased. Filled square
Fig. 3~a! show theb dependence ofdto, obtained by DMA
theory @Eq. ~66!# with w50.0 and N5100, while open
squares express the rms value of firing times obtained
simulations. The agreement between the two method
fairly good. In contrast, filled circles in Fig. 3~a! show theb
dependence ofdtog relevant to the global variable obtaine
by DMA theory @Eq. ~73!# and open circles stand for RMS
values of firing times in simulations. We note thatdtog is
much smaller thandto, although bothdtog anddto, are pro-
portional tob for weak noises under consideration. Figu
3~b! will be explained shortly in connection to the result
the w dependence.

B. Cluster-sizeN dependence

Filled squares in Fig. 4~a! show theN dependence of the
local fluctuation ofdto, for b50.01 andw50.0, obtained
by DMA theory, while open squares express that obtained
simulations. Simulations have not been performed forN
.100 because of a limitation in our computer facility. W
note thatdto, is independent ofN because of no coupling
(w50). In contrast, filled circles in Fig. 4~a! show theN
dependence of the global fluctuation ofdtog obtained by
DMA theory, while open circles that by simulations. Th
relation, dtog}(1/AN), holds as given by Eq.~75!. Figure
4~b! for finite w will be discussed shortly.

in

FIG. 4. Log-log plots ofdto, ~squares! anddtog ~circles! against
N for ~a! w50.0 and~b! w50.2, filled symbols denoting results i
DMA theory and open symbols those in simulations. Shown at
uppermost part in~b! are the DMA result~small, filled squares! and
results with Eq.~E1! with n51 and 2~thin solid curves!: they are
shifted upward by 0.433 for the clarity of the figure~see text!.
3-8
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C. Coupling-strength w dependence

So far, we have neglected the couplingw among neurons
which is now introduced. Filled squares in Fig. 3~b! show the
b dependence of local fluctuations ofdto, calculated by
DMA theory for w50.2 andN5100, while open square
that obtained by simulations. Filled and open circles expr
global fluctuations ofdtog in the DMA theory and simula-
tions, respectively. Comparing these results with those
w50.0 shown in Fig. 3~a!, we note thatdto, is much re-
duced asw is increased, although there is little change
dtog .

This is more clearly seen in Fig. 5~a!, which shows thew
dependence of firing-time fluctuations. Filled squares in F
5~a! show fluctuations ofdto, for the local variable obtained
for b50.01 andN5100 by the DMA theory, while open
squares express those calculated by simulations. Filled
open circles in Fig. 5~a! show fluctuations ofdtog for the
global variable obtained by the DMA theory and simulation
respectively. Whenw is increased,dto, is considerably de-
creased, whereasdtog is almost constant. Figure 5~b! shows
a similar plot of thew dependence of firing times when th
size of an ensemble is reduced toN510. We note thatdtog
for N510 is 3.16 times larger thandtog for N5100 because
dtog is proportional to 1/AN.

Results obtained by DMA theory are analyzed in the A
pendix E, where we get the expression for thew andN de-
pendentdto, given by @see Eq.~E1!#

dto,~w,N!

dto,~0,1!
;12S 1

2D S 12
1

ND n

~a1w1a2w21••• !,

~78!

where n51, dto,(0,1)52.71, a157.0, and a25211.0.
Bold, dashed curves forw<0.2 in Figs. 5~a! and 5~b! show
the w dependence ofdto, for N5100 and 10, respectively
expressed by Eq.~78!, which are in good agreement wit
results of DMA theory shown by filled squares.

FIG. 5. Thew dependence ofdto, ~squares! anddtog ~circles!
for ~a! N5100 and~b! N510 with b50.01, filled symbols denot-
ing results in DMA theory and open symbols those in simulatio
Bold, dashed curves forw<0.2 express Eq.~78! ~see text!.
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Log-log plots of Fig. 4~b! show theN dependence ofdto,

~squares! and dtog ~circles! for w50.2 andN5100, filled
and open symbols denoting results of DMA and simulatio
respectively. Althoughdtog}(1/AN) as in the case ofw50
@Fig. 4~a!#, dto, shows the peculiarN dependence, which
arises from the (121/N) term in Eq.~78!. TheN dependence
given by Eq.~78! with n51 and 2 is shown by thin solid
curves at the uppermost part in Fig. 4~b!, which are shifted
upward by 0.433 for a clarity of the figure. The result wi
n51 is in better agreement with the result of DMA theo
shown by small filled squares than that withn52 ~see Ap-
pendix E!.

Couplings among neurons work to increase the synch
nous dynamics and to suppress local fluctuations. Figu
6~a! and 6~b! show the time sequence of the synchronizat
ratio S(t) defined by Eq.~77! for w50.1 andw50.2, re-
spectively, with b50.01 and N5100. Solid and dashed
curves in Figs. 6~a! and 6~b! show results in DMA theory
and simulations, respectively. Both results are in fairly go
agreement. We note thatS(t) has two peaks at times whe
r1,1(t) also has double peaks@Fig. 1~d!#. The maximum
value ofS(t) for w50.2 isSmax50.132, which is larger than
Smax50.041 forw50.1. This trend is more clearly seen
Fig. 7, where the maximum magnitude ofS(t), Smax, is plot-
ted as a function ofw for N510, 20, 50, and 100. It is show

.

FIG. 6. The time course of synchronization ratioS for ~a! w
50.1 and~b! w50.2 with b50.01 andN5100, the solid curve
denoting results of DMA theory and the dashed curve those
simulations.

FIG. 7. Thew dependence of the maximum ofS, Smax, for N
510 ~squares!, N520 ~triangles!, N550 ~inverted triangles!, and
N5100 ~circles! with b50.01, filled symbols denoting results o
DMA theory and open symbols those of simulation. Bold, dash
curves forw<0.2 express Eqs.~79!–~81! ~see text!.
3-9
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HIDEO HASEGAWA PHYSICAL REVIEW E67, 041903 ~2003!
that Smax is increased as the coupling strength is increas
as expected. Figure 7 also shows that the effect of couplin
more significant in ensembles with smallerN.

An analysis of the result obtained in DMA theory yield
the expression forw- and N-dependentSmax given by @see
Eq. ~E8! in Appendix E#

Smax~w,N!5c1w1c2w21•••, ~79!

with

c15S 1

ND S 12
1

NDb1 , ~80!

c25S 1

ND S 12
1

ND Fb21S 12
1

ND 2

b1
2G , ~81!

where b1522 andb252290. Bold, dashed curves forw
<0.2 in Fig. 7 showSmax expressed by Eqs.~79!–~81!,
which are in good agreement with results obtained in DM
theory shown by solid curves. If we define the coupling co
stantwm(N) for which Smax is, for example, 0.3 for a given
N, we get wm(N)50.101, 0.147 0.237, and 0.322 forN
510, 20, 50, and 100, respectively, which lead
wm(N)/wm(10)51.0, 1.46, 2.35, and 3.19, respective
when wm(N) is normalized bywm(N510). This suggests
that we may getwm(N)}AN. This arises from the fact tha
the relation:Smax}w2/N nearly holds forSmax50.3, for
which the contribution from thew2 term is more consider
able than that from thew term in Eqs.~79!–~81!. Of course,
it is not the case for much smaller value ofSmax, for which
the first term is more dominant than the second term.

Expressions of Eqs.~E1!–~E8! for w- andN dependence
of fluctuations and the synchronization ratio, which are o
tained based on the results calculated in DMA theory,
useful in a phenomenological sense. For example, in the
of negative ~inhibitory! couplings, Eqs.~E1! and~E8! yield
an increase indto, and a negativeS, which are supported by
numerical calculations with DMA theory and simulation
~not shown!. We have tried to extract coefficientsa1 , a2 , b1,
and b2 in Eqs. ~E1!–~E8!, by expanding Eqs.~20!–~27! in
terms ofw, but have not succeeded yet.

IV. DISCUSSIONS

It is possible to extend the DMA theory we proposed to
large FN neuron cluster that is divided into multipleM sub-
clusters according to their functions. Dynamics of a sin
FN neuroni in a given subclusterm (51 to M ) that consists
of Nm neurons is described by the nonlinear DEs given b

dxi~ t !

dt
5F@xi~ t !#2cyi~ t !1I i

(c1)~ t !1I i
(c2)~ t !

1I m
(e)~ t !1j i~ t !, ~82!

dyi~ t !

dt
5bxi~ t !2dyi~ t !1e ~ i 512Nm!, ~83!
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wherexi and yi denote the fast~voltage! variable and slow
~recovery! variable, respectively,j i(t) the Gaussian white
noise with^j i(t)&50 and^j i(t)j j (t8)&5b2d i j d(t2t8), the
bracket̂ •••& denoting the average@57#. In Eq. ~82!, I i

(c1)(t)
and I i

(c2)(t) are given by

I i
(c1)~ t !5

wmm

Nm
(
j Pm

G„xj~ t !…, ~84!

I i
(c2)~ t !5 (

n(Þm)
S wmn

Nn
D (

kPn
G„xk~ t !…, ~85!

which express the couplings within the subclusterm with
strengthwmm, and those between subclusters with stren
wmn , respectively,Nm the number of neurons in the subclu
ter m, andG(x) is the sigmoid function.I m

(e)(t) stands for an
external single spike input applied to all neurons in the s
clusterm, as given by Eq.~3!.

As in the Sec. IIA, we first define the global variables f
the subclusterm by

Xm~ t !5
1

Nm
(
i Pm

xi~ t !, ~86!

Ym~ t !5
1

Nm
(
i Pm

yi~ t !, ~87!

and their averages by@57#

m1
m~ t !5^Xm~ t !&, ~88!

m2
m~ t !5^Ym~ t !&. ~89!

Next we define variances and covariances between l
variables in the subclusterm, given by

g1,1
m 5

1

Nm
(
i Pm

^~dxi
m!2&, ~90!

g2,2
m 5

1

Nm
(
i Pm

^~dyi
m!2&, ~91!

g1,2
m 5

1

Nm
(
i Pm

^~dxi
mdyi

m!&, ~92!

and those between global variables in the subclusterm, given
by

r1,1
m 5^~dXm!2&, ~93!

r2,2
m 5^~dYm!2&, ~94!

r1,2
m 5^~dXmdYm!&, ~95!

where dxi
m5xi(t)2m1

m(t), dyi
m5yi(t)2m2

m(t), dXm

5Xm(t)2m1
m(t), and dYm5Ym(t)2m2

m(t). Covarinaces
between variables belonging to different subclusters are
taken into account. As in the single ensemble case discu
3-10
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in Sec. II A, we assume a weak noise and the Gaussian
tribution of state variables adopting the mean-field appro
mation. After some manipulations, we get the followin
DEs:

dm1
m

dt
5 f 0

m1 f 2
mg1,1

m 2cm2
m1wmmS 12

1

Nm
DUom

1 (
n(Þm)

wmnU0n1I m
(e)~ t !, ~96!

dm2
m

dt
5bm1

m2dm2
m1e, ~97!

dg1,1
m

dt
52@~ f 1

m13 f 3
mg1,1

m !g1,1
m 2cg1,2

m #

12wmmS r1,1
m 2

g1,1
m

Nm
DU1m12 (

n(Þm)
wmnr1,1

n U1n1b2,

~98!

dg2,2
m

dt
52~bg1,2

m 2dg2,2
m !, ~99!

dg1,2
m

dt
5bg1,1

m 1~ f 1
m13 f 3

mg1,1
m 2d!g1,2

m 2cg2,2
m

1wmmS r1,2
m 2

g1,2
m

Nm
DU1m1 (

n(Þm)
wmnr1,2

n U1n ,

~100!

dr1,1
m

dt
52@~ f 1

m13 f 3
mg1,1

m !r1,1
m 2cr1,2

m #

12wmmS 12
1

Nm
D r1,1

m U1m1
b2

Nm
, ~101!

dr2,2
m

dt
52~br1,2

m 2dr2,2
m !, ~102!

dr1,2
m

dt
5br1,1

m 1~ f 1
m13 f 3

mg1,1
m 2d!r1,2

m 2cr2,2
m

1wmmS 12
1

Nm
D r1,2

m U1m , ~103!

with

U0m5go
m1g2

mg1,1
m , ~104!

U1m5g1
m13g3

mg1,1
m , ~105!

where f ,
m5(1/,!)F (,)(m1

m) and g,
m5(1/,!)G(,)(m1

m). Now
we have to solve 8M -dimensional deterministic DEs@Eqs.
~96!–~103!#, which are more amenable than 2NM stochastic
DEs.
04190
is-
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When a given cluster can be divided into excitatory a
inhibitory subgroups and when variance and covaria
terms in Eqs.~96!–~103! are neglected, we get

dm1
E

dt
5 f 0

E2cm2
E1wEEUE1wEIUI1I E

(e)~ t !, ~106!

dm2
E

dt
5bm1

E2dm2
e1e, ~107!

dm1
I

dt
5 f 0

I 2cm2
I 1wII UI1wIEUE1I I

(e)~ t !, ~108!

dm2
I

dt
5bm1

I 2dm2
I 1e, ~109!

where the suprascriptsE and I stand for the excitatory and
inhibitory clusters, respectively. This corresponds to the
sult of Wilson and Cowan@58#. Then our DMA theory given
by Eqs.~96!–~103! may be regarded as a generalized vers
of the Wilson-Cowan theory including fluctuations of loc
and global variables.

The fraction of firings of neurons in the subclusterm is
given by

Zom~ t !5fS u2m1
m

s,m
D d

dt S m1
m

s,m
DQ~ṁ1

m!, ~110!

with

s,m5Ag1,1
m . ~111!

When we expandm1
m(t) in Eq. ~110! around tom* , where

m1
m(tom* )5u, it becomes

Zom~ t !;fS t2tom*

dtom
D d

dt S m1
m

s,m
DQ~ṁ1

m!, ~112!

with

dtom5
s,m

ṁ1
m

, ~113!

where m1
m , ṁ1

m , and s,m are evaluated att5tom* . This
shows that most of the firing times of a given subclusterm
are located in the range given as

tomP@ tom* 2dtom , tom* 1dtom#. ~114!

The synchronization ratio of a given subclusterm is given
by

Sm~ t !5
r1,1

m /g1,1
m 21/Nm

121/Nm
, ~115!

which is 0 and 1 for completely asynchronous and synch
nous states, respectively.

We have performed model calculations, assumingM
(510) subclusters, each of which consists ofNm(5N) neu-
3-11
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FIG. 8. Time courses of~a! Zom and ~b! Sm for b50.05 and those of~c! Zom and ~d! Sm for b50.23 calculated withw15w250.1,
N5100, andM510 by DMA theory.
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rons. They are connected by feed-forward intersubclu
coupling given bywmn5w2dnm21, which is allowed to be
different from the intrasubcluster coupling given bywmm
5w1 for all m. A single spike input given by Eq.~3! is
applied only to the first subcluster (m51), and an output of
a subclusterm is subsequently forwarded to the next subclu
ter m11. This is conceptually similar to the synfire cha
@59#. Whenw2 is too small, signals cannot propagate throu
subclusters. The critical value of the intersubcluster coup
w2c , below which a spike cannot propagate through subc
ters, isw2c50.064, 0.028, and 0.020 forw150.0, 0.1, and
0.2, respectively, withb50.0 andN5100.

Figure 8~a! shows the time course ofZom(t) calculated in
the DMA theory withb50.05, w15w250.1, andN5100.
Signals propagate through subclusters withdtom.0.8 for all
m. The result is in good agreement with that obtained
direct simulations~not shown!. Synchronization ratiosSm(t)
shown in Fig. 8~b! have double peaks@see Figs. 6~a! and
6~b!#. The maximum value ofSm(t), for example, is 0.022
for m51 at t5122.2.

In contrast, Fig. 8~c! shows the time course ofZom(t) for
the increased noise intensity ofb50.23, which shows tha
signals cannot propagate, dying out at the sixth subcluste
this case, the agreement of DMA results with simulations
not satisfactory. Synchronization ratiosSm(t) for b50.23
shown in Fig. 8~d! have multiple peaks for 1<m<4, double
peaks form55, a single peak form56, and it disappears
for m.6.

Figure 9~a! shows them dependence of local fluctuation

FIG. 9. dtom as a function ofm for ~a! w15w250.1 and~b!
w150.1 andw250.0 with N5100 andM510.
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dtom for variousb with w15w250.1 andN5100. We note
thatdtom is almost constant forb50.05 and 0.10. In the cas
of b50.23, however,dtom is divergently increased atm
55. This behavior is not changed when we adopt a differ
set of parameters. Figure 9~b! shows a similar plot ofdtom as
a function ofm for w150.0, w250.1, andN5100. Signals
propagate withdtom50.04 and 0.12 forb50.01 and 0.05,
respectively. Forb50.09, however, a spike dies out atm
58.

Figure 10 shows thew1 dependence of the critical nois
strengthbc , above which signals cannot propagate. We
bc50.09 and 0.23 forw150.0 and 0.1, respectively, forN
5100 as discussed above. Whenw1 is set to be 0.2,bc
becomes 0.38 forN5100. We note thatbc is almost linearly
increased by increasingw1. Figure 10 also shows that th
critical value ofbc becomes larger as the size of subclus
~N! is larger.

V. CONCLUSIONS

We have proposed a DMA theory for stochastic FN ne
ron ensembles, in which means, variances, and covaria
of local and global variables are taken into account. O
DMA theory, which assumes weak noises and the Gaus
distribtuion of state variables with the mean-field approxim
tion, has been derived in various ways:~1! equations of mo-
tions for means, variances, and covariances of local and
bal variables~Sec. II A!, ~2! a reduction in the number o
moments in the moment method with the mean-field

FIG. 10. Thew1 dependence ofbc for variousN values with
w250.1.
3-12
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DYNAMICAL MEAN-FIELD THEORY OF SPIKING . . . PHYSICAL REVIEW E67, 041903 ~2003!
proximation~Sec. II B!, and ~3! a single-site self-consisten
approximation to the moment method@Sec. II C#. In particu-
lar, results obtained from the second-order moment met
@43# have been shown to exactly agree with those of DM
Calculated results based on DMA theory are in good ag
ment with those obtained by direct simulations for we
noises. When the noise intensity becomes stronger, the s
variable distribution more deviates from the Gaussian fo
~see Fig. 3 of Ref.@47#!, and the agreement of results
DMA theory with those of simulations becomes worse. Ne
ertheless, our DMA theory is expected to be meaningful
qualitative or semiquantitative discussion on the proper
of neuron ensembles or clusters. It is possible to regard n
linear DEs given by Eqs.~20!–~27! @or Eqs.~96!–~103!# as
the mean-field FN modelfor neuron ensembles or cluster
We hope that our DMA theory may play a role of th
molecular-field~Weiss! theory in magnetism@55#: the Weiss
theory provides a clear physical picture on various magn
properties despite some disadvantages such that it yields
high critical ~Curie! temperature, wrong critical indices, an
wrong temperature dependence for magnetization at
temperatures. Our DMA theory may be applied to a gene
conductance-based nonlinear systems. When we consid
ensemble ofN-unit neurons, each of which is described
K-variable nonlinear DEs, the number of the determinis
DEs in DMA is Neq5K1K(K11)5K(K12) independent
of N. For an ensemble ofN HH neurons (K54), for ex-
ample, DMA yieldsNeq524 which is more amenable tha
original 4N stochastic equations@60#. Furthermore, our
DMA theory based on moments of local and global variab
can be applied to more general stochastic systems be
neural networks@61#.

In summary, we have developed a semianalytical DM
theory for FN neuron ensembles. In order to show the fe
bility of the DMA theory, we have studied the response
ensembles of FN neurons to a single spike input. The re
is summarized as follows.

~i! The spike timing precision of the global variable
much improved by increasing the ensemble size, even w
there is no coupling among constituent neurons.

~ii ! By increasing the coupling strength, the spike tra
mission is enhanced by the synchronous response.

~iii ! The spike propagation with a fairly precise timing
possible in large-scale clusters when the noise strengt
moderate.

The origin of the item~i! is the same as that yielding th
central-limit theorem. The couplings suppress local fluct
tions and increase the synchronization ratio@Eq. ~77!#. Items
~i! and~ii ! are consistent with the results reported previou
@30–35#. The item~iii ! agrees with the result of recent sim
lations for synfire chains, each layer of which consists of 1
IF neurons@62#. Items ~i!–~iii ! are beneficial to the popula
tion temporal-code hypothesis mentioned in the Introducti
Although calculations reported in this paper have been l
ited to suprathreshold inputs, it is possible to study the
sponse to subthreshold inputs with the use of DMA theo
We may investigate combined effects of white noises and
heterogeneity in model parameters, which have been in
04190
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sively studied in recent years@63#. Such calculations are in
progress and will be reported in a separate paper.
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APPENDIX A: DERIVATION OF EQS. „20…–„27…
AND EQS. „32…–„36…

From Eqs.~9!–~13!, we get DEs for the deviations ofdxi
anddyi of the neuroni, given by

ddxi

dt
5 f 1dxi1 f 2~dxi

22g1,1!1 f 3dxi
32cdyi1j i1dI i

(c) ,

~A1!

ddyi

dt
5bdxi2ddyi , ~A2!

with

dI i
(c)5wS g1

N (
j (Þ i )

dxj1g2F 1

N (
j (Þ i )

dxj
22S 12

1

NDg1,1G
1

g3

N (
j (Þ i )

dxj
3D . ~A3!

The differential equations for the variances and covarian
are given by

dgk,l

dt
5

d

dt S 1

ND(
i

^@~dxi
2!dk1dl11~dxidyi !dk1dl2

1~dyi
2!dk2dl2#&,

5
1

N (
i

K H 2Fdxi S ddxi

dt D Gdk1dl11Fdyi S ddxi

dt D
1dxi S ddyi

dt D Gdk1dl212Fdyi S ddyi

dt D Gdk2dl2J L ,

~A4!

drk,l

dt
5

d

dt S 1

N2D(i
(

j
^@~dxidxj !dk1dl1

1~dxidyj !dk1dl21~dyidyj !dk2dl2#&

5
1

N2 (
i

(
j

K H 2Fdxi S ddxj

dt D Gdk1dl11Fdyi S ddxj

dt D
1dxi S ddyj

dt D Gdk1dl212Fdyi S ddyj

dt D Gdk2dl2J L ,

~A5!
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In the process of the calculation using Eqs.~20!–~27!, we
have adopted the following Gaussian decoupling and me
field approximations.

~1! The fourth-order variances are assumed to be@47#

1

N (
i

^dxi
4&.3 g1,1g1,1, ~A6!

1

N (
i

^dxi
3dyi&.3 g1,1g1,2, ~A7!

and

1

N2 (
i

(
j

^dxidxj
3&.3g1,1r1,1, ~A8!

1

N2 (
i

(
j

^dyidxj
3&.3g1,1r1,2, ~A9!

other fourth-order terms being set to zero.
~2! The third-order variances and terms higher than fou

order are neglected,
Calculations of means, variances, and covariances g

by Eqs.~32!–~36! in the moment method are similarly pe
formed to get Eqs.~37!–~41! if we read asm1

i →m1 , m2
i

→m2 , Dxi→dxi , andDyi→dyi for the calculation in DMA
theory presented above.

APPENDIX B: COMPARISON OF DMA WITH THE
MOMENT METHOD

With the use of Eqs.~37!–~41! and Eqs.~44!–~46!, DEs
for dm̄k /dt, dḡk,l /dt, anddr̄k,l /dt are given by~bars are
neglected!

dm1

dt
5 f 01 f 2g1,12cm21wS 12

1

ND ~g01g2g1,1!1I (e)~ t !,

~B1!

dm2

dt
5bm12dm21e, ~B2!

dg1,1

dt
52~ f 1g1,12cg1,2!12w g1S r1,12

g1,1

N D1b2

16 f 3S 1

ND(
i

D1,1
i ,i D1,1

i ,i

16wg3S 1

N2D(i
(

k
@D1,1

k,kC1,1
i ,k2D1,1

i ,i D1,1
i ,i d ik#,

~B3!

dg2,2

dt
52~bg1,22dg2,2!, ~B4!
04190
n-

h

en

dg1,2

dt
5bg1,11~ f 12d!g1,22cg2,21w g1S r1,22

g1,2

N D
13 f 3S 1

ND(
i

D1,1
i ,i D1,2

i ,i

16wg3S 1

N2D(i
(

k
@D1,1

k,kC1,2
i ,k2D1,1

i ,i D1,2
i ,i d ik#,

~B5!

dr1,1

dt
52~ f 1r1,12cr1,2!12wS 12

1

NDg1r1,11
b2

N

16 f 3S 1

N2D(i
(

j
D1,1

i ,i C1,1
i , j

16wg3S 1

N3D(i
(

j
(

k(Þ i )
D1,1

k,kC1,1
j ,k , ~B6!

dr2,2

dt
52~br1,22dr2,2!, ~B7!

dr1,2

dt
5br1,11~ f 12d!r1,22cr2,21wS 12

1

NDg1r1,2

13 f 3S 1

N2D(i
(

j
D1,1

i ,i C1,2
i , j

13wg3S 1

N3D(i
(

j
(

k(Þ i )
D1,1

k,kC1,2
j ,k , ~B8!

whereDk,l
i ,i 5Ck,l

i ,i 1dk,l , anddk,l is given by Eqs.~47! and
~48!. In deriving Eqs.~B1!–~B8!, we employ expressions
given by

f 0
i 5 f 01 f 1d m1

i 1 f 2~dm1
i !21 f 3~dm1

i !31•••, ~B9!

f 1
i 5 f 112 f 2d m1

i 13 f 3~dm1
i !21•••, ~B10!

f 2
i 5 f 213 f 3dm1

i 1•••, ~B11!

and corresponding ones forg0
i , g1

i , andg2
i in Eqs.~42! and

~43!. Furthermore, we adopt DEs forddm1
i /dt andddm2

i /dt
given by

ddm1
i

dt
5 f 1dm1

i 1 f 2~D1,1
i ,i 2g1,1!1 f 3@3C1,1

i ,i 1~dm1
i !2#dm1

i

2c dm2
i 1

w

N (
k(Þ i )

$g1dm1
k1g2~D1,1

k,k2g1,1!

1g3@3C1,1
k,k1~dm1

k!2#dm1
k%, ~B12!

ddm2
i

dt
5bdm1

i 2d dm2
i , ~B13!
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and the Gasussin approximation given by

1

N (
i

~dmk
i !3dml

i .3dk,kdk,l . ~B14!

We note that DEs form1 , m2 , g2,2, andr2,2 given by Eqs.
~B1!, ~B2!, ~B4!, and ~B7! agree with those in DMA given
by Eqs.~20!, ~21!, ~23!, and ~26!, respectively. In contrast
although thesecond-ordermoment terms in DEs forg1,1,
g1,2, r1,1, andr1,2 given by Eqs.~B3!, ~B5!, ~B6!, and~B8!
agree with those in DMA given by Eqs.~22!, ~24!, ~25!, and
~27!, respectively, theirfourth-order moment terms withf 3
andg3 reduce to the corresponding terms in DMA when w
adopt the mean-field approximations as given by

1

N (
i

f 3D1,1
i ,i D1,1

i ,i . f 3g1,1S 1

ND(
i

D1,1
i ,i 5 f 3g1,1g1,1,

~B15!

1

N2 (
i

(
k

g3D1,1
k,kC1,1

i ,k.g3g1,1S 1

N2D(i
(

k
C1,1

i ,k

5g3g1,1r1,1, ~B16!

with which Eqs.~B3!, ~B5!, ~B6!, and~B8! fully agree with
Eqs. ~22!, ~24!, ~25!, and ~27!, respectively. It is noted tha
Eqs.~B14!–~B16! are similar to Eqs.~A6!–~A9!.

1. NÄ1 case

For a single neuron (N51), Eqs.~B1!–~B8! reduce to

dm1

dt
5 f 01 f 2g1,12cm11I (e)~ t !, ~B17!

dm2

dt
5bm12dm21e, ~B18!

dg1,1

dt
52~ f 1g1,113 f 3g1,1

2 2cg1,2!1b2, ~B19!

dg2,2

dt
52~bg1,22dg2,2!, ~B20!

dg1,2

dt
5bg1,11~ f 12d!g1,213 f 3g1,1g1,22cg2,2,

~B21!

rk,l5gk,l . ~B22!

Equations~B17!–~B22! show that results of the momen
method of Rodriguez and Tuckwell~RT! @44# and Tanabe
and Pakdaman~TP! @47# agree with those of DMA with the
relations:mk5mk andgk,l5rk,l5Ck,l

1,1 . In RT, the fourth-
order terms which appear in the process of calculat
dg1,1/dt anddg1,2/dt in Eqs.~B19! and~B21! are assumed
to be zero, whereas in TP, they are assumed to be give
Eqs.~A6! and ~A7!.
04190
g

by

2. NÄ2 case

As mentioned above, expressions ofm1 , m2 , g2,2, and
r2,2 for a pair of neuron ensemble (N52) derived from the
moment method agree with the DMA results. Expressions
g1,1, g1,2, r1,1, andr1,2 given by Eqs.~B3!, ~B5!, ~B6!, and
~B8! for N52 become

dg1,1

dt
52~ f 1g1,12cg1,2!12w g1S r1,12

g1,1

2 D1b2

13 f 3@D1,1
1,1D1,1

1,11D1,1
2,2D1,1

2,2#1S 3

2Dw

3g3@D1,1
1,1~C1,1

1,12D1,1
1,1!1D1,1

2,2~C1,1
2,22D1,1

2,2!

1D1,1
2,2D1,1

1,21D1,1
1,1D1,1

2,1#, ~B23!

dg1,2

dt
5bg1,11~ f 12d!g1,22cg2,21w g1S r1,22

g1,2

2 D
1S 3

2D f 3@D1,1
1,1D1,2

1,11D1,1
2,2D1,2

2,2#1S 3

2Dw

3g3@D1,1
1,1~C1,2

1,12D1,2
1,1!1D1,1

2,2~C1,2
2,22D1,2

2,2!

1D1,1
2,2D1,2

1,21D1,1
1,1D1,2

2,1#, ~B24!

dr1,1

dt
52~ f 1r1,12cr1,2!12wS 1

2Dg1r1,11
b2

2

1S 3

2D f 3@D1,1
1,1~C1,1

1,11C1,1
1,2!1D1,1

2,2~C1,1
2,11C1,1

2,2!#

1S 3

4Dwg3@D1,1
2,2~C1,1

1,21C1,1
2,2!1D1,1

1,1~C1,1
1,11C1,1

2,1!#,

~B25!

dr1,2

dt
5br1,11~ f 12d!r1,22cr2,21wS 1

2Dg1r1,2

1S 3

4D f 3@D1,1
1,1~C1,2

1,11C1,2
1,2!1D1,1

2,2~C1,2
2,11C1,2

2,2!#

1S 3

8Dwg3@D1,1
2,2~C1,2

1,21C1,2
2,2!1D1,1

1,1~C1,2
1,11C1,2

2,1!#.

~B26!

Adopting the mean-field approximation as given by Eq
~B15! and ~B16!, we get the following results obtained i
DMA:

dm1

dt
5 f 01 f 2g1,12cm21S 1

2Dw U01I (e)~ t !, ~B27!

dm2

dt
5bm12dm21e, ~B28!
3-15
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dg1,1

dt
52@~ f 113 f 3g1,1!g1,12cg1,2#12wS r1,12

g1,1

2 DU1

1b2, ~B29!

dg2,2

dt
52~bg1,22dg2,2!, ~B30!

dg1,2

dt
5bg1,11~ f 113 f 3g1,12d!g1,22cg2,2

1wS r1,22
g1,2

2 DU1 , ~B31!

dr1,1

dt
52@~ f 113 f 3g1,1!r1,12cr1,2#1w r1,1U11

b2

2
,

~B32!

dr2,2

dt
52~br1,22dr2,2!, ~B33!

FIG. 11. A numerical comparison between DMA and mome
methods forN52 with A50.10, b50.01, andw50.2: ~a! m1 and
m2, ~b! m1

i andm2
i , ~c! g1,1 andr1,1, ~d! C1,1

i , j , ~e! g2,2 andr1,1, ~f!
C2,2

i , j , ~g! g1,2 and r1,2, and ~h! C1,2
i , j ( i , j 51,2). Results of DMA

agree with those of the moment method~see text!.
04190
dr1,2

dt
5br1,11~ f 113 f 3g1,12d!r1,22cr2,21S 1

2Dw r1,2U1 ,

~B34!

whereU05g01g2g1,1 andU15g113g3g1,1.
Figures 11~a!–11~h! show the numerical comparison be

tween DMA and moment methods for a typical set of mod
parameters ofb50.01, w50.2, andN52 with an external
input given by Eq.~3! for A50.1, t in5100, andTw510.
Left panels@Figs. 11~a!, 11~c!, 11~e!, and 11~g!# express re-
sults in DMA and right panels@Figs. 11~b!, 11~d!, 11~f!, and
11~h!# those in the moment method. We note that our mo
satisfies the condition given by Eqs.~49! and~50!, for which
DMA and the moment method yield the same result for
averaged quantities given bymk5m̄k[(1/2)(mk

11mk
2),

gk,l5ḡk,l[(1/2)(Ck,l
1,1 1Ck,l

1,1 ), and rk,l5 r̄k,l

[(1/4)(Ck,l
1,1 1Ck,l

1,2 1Ck,l
2,1 1Ck,l

2,2 ) for N52. Actually, Figs.
11~a! and 11~b! show thatm15m1

15m1
2 and m25m2

15m2
2.

Figure 11~c! expressesg1,1 andr1,1, which consist of intra-
site (C1,1

1,15C1,1
2,2) and intersite components (C1,1

1,25C1,1
2,1)

shown in Figs. 11~d!. For an adopted value ofw50.2, the
intersite~1,1! component ofC1,1

1,25C1,1
2,1, which vanishes for

w50, has an appreciable magnitude comparable toC1,1
1,1

5C1,1
2,2, while an input is applied at 100<t<110. This is true

also for intersite~2,2! components (C2,2
1,25C2,2

2,1) and ~1,2!
components (C1,2

1,25C1,2
2,1), which are shown in Figs. 11~e!–

11~h!. Calculated results of DMA and moment methods a
in good agreement with those of simulations~not shown!.

APPENDIX C: DERIVATION OF EQ. „59…

The distributionP(xi) in Eq. ~59! is formally given by

P~xi !5E •••E P j (Þ i )dxjP jdyj

3p~x1 , . . . ,xN ,y1 , . . . ,yN!, ~C1!

with the Gaussian distribution function~pdf! of
p(x1 , . . . ,xN ,y1 , . . . ,yN) for the 2N-dimensionl vectorz
5(x1 , . . . ,xN ,y1 , . . . ,yN) t, given by

p~x1 , . . . ,xN ,y1 , . . . ,yN!

5
1

~2p!NAuVu
expF2

1

2
~z2m! tV21~z2m!G ,

~C2!

wherem and V express the mean vector and the varian
covariance matrix, respectively,

In the case of a single FN neuron (N51), pdf is given by

p~x1 ,y1!5p1~x1 ,y1!

5
1

~2p!AuVu
expF2

1

2
~z2m! tV21~z2m!G ,

~C3!

t

3-16
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with

z5~x1 ,y1! t, ~C4!

m5~m1 ,m2! t, ~C5!

V5S g1,1 g1,2

g1,2 g2,2
D . ~C6!

Substituting Eqs.~C3!–~C6! into Eq. ~C1!, we get

P~x1!5E dy1p~x1 ,y1!5
1

Ag1,1

fS x12m1

Ag1,1
D , ~C7!

wheref(x) denotes the normal distribution function,

f~x!5
1

A2p
expS 2

x2

2 D . ~C8!

In the case of arbitraryN under consideration, the calcu
lation of P(xi) may be performed within DMA as follows
As mentioned in Sec. II C, our DMA theory assumes t
configuration in which asingle neuron is embedded in a
effective medium characterized bymk , gk,l , andrk,l @Eqs.
~54!–~56!#. Thus, it is effectively the problem of a singl
neuron in the effective medium. Meansmk , variancesgk,k ,
and covariancesgk,l of local variables are determined b
Eqs.~20!–~24!. Then the calculation ofP(xi) for N.1 is the
same as that forN51 mentioned above, and it is given by

P~xi !5E dy1p~x1 ,y1!5
1

Ag1,1

fS xi2m1

Ag1,1
D . ~C9!

APPENDIX D: DERIVATION OF EQ. „69…

Equations~20!, ~21!, and~25!–~27! form DEs for means
mk , variancesrk,k , and covariancesrk,l for global vari-
ables,X andY. ThenP(X) in Eq. ~69! is given by

P~X!5E dY p~X,Y!, ~D1!

with pdf for the two-dimensional vectorz5(X,Y) t given by

p~X,Y!5
1

2pAuVu
expF2

1

2
~z2m! tV21~z2m!G ,

~D2!

with

m5~m1 ,m2! t, ~D3!

V5S r1,1 r1,2

r1,2 r2,2
D . ~D4!

Substituting Eqs.~D2!–~D4! in Eq. ~D1!, we obtain
04190
P~X!5
1

Ar1,1

fS X2m1

Ar1,1
D , ~D5!

wheref(x) denotes the normal distribution@Eq. ~C8!#.
Alternatively, P(X) is expressed by

P~X!5E •••E P idxiP idyip~x1 , . . . ,xN ,y1 , . . . ,yN!

3dS X2
1

N (
i

xi D , ~D6!

where p(x1 , . . . ,xN ,y1 , . . . ,yN) stands for pdf for
2N-dimensional vector@Eq. ~C2!#. However, a calculation of
P(X) based on Eq.~D6! is difficult, except for the no cou-
pling case (w50), for which pdf is given by

p~x1 , . . . ,xN ,y1 , . . . ,yN!5P i p1~xi ,yi !, ~D7!

p1(xi , yi) being pdf forN51 @Eq. ~C3!#. Performing inte-
grals with respect toyi in Eq. ~D6! with Eq. ~D7!, we get

P~X!5E •••E P idxiP i

1

Ag1,1

fS xi2m1

Ag1,1
D

3dS X2
1

N (
i

xi D . ~D8!

By using the procedure conventionally used for proving
central-limit theorem, we obtain Eq.~D5! with r1,1

5g1,1/AN ~for w50). We should note that a calculation o
P(X) based on Eq.~D1! is easier than that based on Eq.~D6!
and that the former is applicable for finite couplings.

APPENDIX E: ANALYSIS OF NOISE, COUPLING,
AND SIZE DEPENDENCE

1. dtoø and dtog

Based on the calculated results of DMA theory, we ha
tried to obtain the analytical expression of theb, w, andN
dependence ofdto, and dtog . Figures 3~a! and 3~b! show
thatdto, anddtog are proportional tob for weak noises, for
which both g1,1 and r1,1 are proportional tob2 @see Eqs.
~61!, ~66!, ~70!, and~73!#. From results shown in Figs. 4 an
5, we have obtained expressions given by

dto,~w,N!

dto,~0,1!
;12S 1

2D S 12
1

ND n

~a1w1a2w21••• !,

~E1!

dtog~w,N!

dto,~0,1!
;

1

AN
, ~E2!

wheren51, dto,(0,1)52.71,a157.0, anda25211.0. The
N dependence ofdto, expressed by Eq.~E1! with n51 and
2 are shown by thin solid curves at the uppermost part in F
4~b! with DMA result ~small filled squares!: these results are
shifted upward by 0.433 for clarity of the figure. The res
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with n51 in better agreement with the DMA result than th
with n52. On the other hand, bold, dashed curves in F
5~a! and 5~b! show thew dependence ofdto, for N5100 and
10, respectively, expressed by Eq.~E1! with n51, which is
in good agreement with results of DMA theory shown
filled squares. This implies from Eqs.~61!, ~66!, ~70!, and
~73! that thew andN dependence ofg1,1 andr1,1 evaluated
at t5to* , wherem1(to* )5u, are given by

g1,1~w,N!

g1,1~0,1!
;12S 12

1

ND ~a1w1a2w21••• !, ~E3!

r1,1~w,N!

g1,1~0,1!
;

1

N
. ~E4!

Note thatdto,(0,1) andg1,1(0,1) are proportional tob and
b2, respectively.

2. Smax

In order to discuss the expression ofb, w, andN depen-
dentSmax, we have analyzed results ofSmax shown in Fig. 7
by

Smax5c1w1c2w21••• ~E5!

to guess how expansion coefficients ofc1 andc2 depend on
N. After several trials, we have concluded that thew andN
dependence ofg1,1 and r1,1 evaluated att5to

(m) , where
r1,1(t) has the maximum value, may be given by
M

04190
t
.

g1,1~w,N!

g1,1~0,1!
;12S 12

1

ND m

~b1w1b2w21••• !, ~E6!

r1,1~w,N!

g1,1~0,1!
;

1

N
~E7!

yielding Smax given by @see Eq.~77!#

Smax~w,N!5S 1

ND S 12
1

ND m21

3H b1w1Fb21S 12
1

ND 2

b1
2Gw2J , ~E8!

wherem52, b1522, andb252290. Bold, dashed curve
in Fig. 7 show thew dependence ofSmax expressed by Eq
~E8! for variousN values, which are in fairly good agree
ment with results of DMA theory shown by solid curves. W
should point out that a factor of (121/N) in Eqs.~E1!, ~E3!,
~E6!, and~E8! appears because the couplingw does not work
in a single-neuron case (N51) and that at least the secon
power (m52) is necessary in Eq.~E6! for Smax to vanish in
theN51 limit. A functional form of Eq.~E3! may be differ-
ent from that of Eq.~E6! because the former is evaluated
to* , while the latter atto

(m) . Our DMA calculation shows tha
when b is increased for a fixed~finite! w value, Smax is
gradually decreased, although Eq.~E8! has nob dependence.
This is due to contributions ofO(b4) to g1,1 andr1,1, which
have not been included in the above discussion.
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